The Effect of Wing Mass and Wing Elevation Motion During Insect Forward Flight

Author:

Yao JieORCID,Yeo K. S.

Abstract

AbstractThis paper is concerned with the numerical simulation of the forward flight of a high Reynolds number flapping-wing flyer, modelled after the hummingbird hawkmoth (Macroglossum stellatarum). The numerical model integrated a Navier-Stokes solver with the Newtonian free-body dynamics of the model insect. The primary cyclic kinematics of wings were assumed to be sinusoidal for simplicity here, which comprises sweeping, elevating and twisting related wing actions. The free flight simulation is very computationally intensive due to the large mesh scale and the iterative solution for the FSI problem, so parallelization is essential in the numerical simulation. Two parallelization techniques are used in current simulation, i.e., open multi-processing (OpenMP) and graphics processing units (GPU) acceleration. The forward flight mainly consists of two stages, i.e., the body pitching down from the normal hovering posture and the following forward acceleration. During this process, the effect of the wing mass and the wing elevation motion is very important, which is investigated in detail. It is found that Oval-shaped wing elevating motion can help to generate large pitching down moment so that the flyer can quickly adjust its orientation for forward acceleration. Moreover, wing mass tends to magnify the effect and prohibits the growth of pitching down velocity, which is favourable aspect. The present study provides detailed information of the coupled dynamics of fluid and flyer in free flight condition, as well as offers a prospective approach that could complement existing experiments in a wider study of insect flight and maneuver.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3