Verifying Generalization in Deep Learning

Author:

Amir Guy,Maayan Osher,Zelazny Tom,Katz Guy,Schapira Michael

Abstract

AbstractDeep neural networks (DNNs) are the workhorses of deep learning, which constitutes the state of the art in numerous application domains. However, DNN-based decision rules are notoriously prone to poor generalization, i.e., may prove inadequate on inputs not encountered during training. This limitation poses a significant obstacle to employing deep learning for mission-critical tasks, and also in real-world environments that exhibit high variability. We propose a novel, verification-driven methodology for identifying DNN-based decision rules that generalize well to new input domains. Our approach quantifies generalization to an input domain by the extent to which decisions reached by independently trained DNNs are in agreement for inputs in this domain. We show how, by harnessing the power of DNN verification, our approach can be efficiently and effectively realized. We evaluate our verification-based approach on three deep reinforcement learning (DRL) benchmarks, including a system for Internet congestion control. Our results establish the usefulness of our approach. More broadly, our work puts forth a novel objective for formal verification, with the potential for mitigating the risks associated with deploying DNN-based systems in the wild.

Publisher

Springer Nature Switzerland

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3