DenseNet for Breast Tumor Classification in Mammographic Images
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-88163-4_16
Reference53 articles.
1. Ferlay, J., et al.: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 136(5), E359–E386 (2015)
2. Ragab, D.A., Sharkas, M., Marshall, S., Ren, J.: Breast cancer detection using deep convolutional neural networks and support vector machines. Peer J. 7, e6201 (2019)
3. Shieh, S.H., Hsieh, V.C.R., Liu, S.H., Chien, C.R., Lin, C.C., Wu, T.N.: Delayed time from first medical visit to diagnosis for breast cancer patients in Taiwan. J. Formos. Med. Assoc. 113(10), 696–703 (2014)
4. Nahid, A.A., Kong, Y.: Involvement of machine learning for breast cancer image classification: a survey. Comput. Math. Methods Med. 2017, 29 (2017). https://doi.org/10.1155/2017/3781951
5. Bardou, D., Zhang, K., Ahmad, S.M.: Classification of breast cancer based on histology images using convolutional neural networks. IEEE Access 6, 24680–24693 (2018)
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Breast Cancer Detection and Localizing the Mass Area Using Deep Learning;Big Data and Cognitive Computing;2024-07-16
2. Multimodal breast cancer hybrid explainable computer-aided diagnosis using medical mammograms and ultrasound Images;Biocybernetics and Biomedical Engineering;2024-07
3. CoF-DResNet: Cancer Metastasis Recognition Network based on Dynamic Coordinated Metabolic Attention and Structural Attention;Current Pharmaceutical Biotechnology;2024-06-12
4. RM-DenseNet: An Enhanced DenseNet Framework with Residual Model for Breast Cancer Classification Using Mammographic Images;2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT);2024-05-02
5. A Multimodal Transfer Learning Approach Using PubMedCLIP for Medical Image Classification;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3