1. Bartlett, P. L., & Traskin, M. (2007). AdaBoost is consistent. Journal of Machine Learning Research, 8, 2347–2368.
2. Bartlett, P. L., Jordan, M. I., & McAuliffe, J. D. (2006). Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101, 138–156.
3. Bickel, P. J., Ritov, Y., & Zakai, A. (2006). Some theory for generalized boosting algorithms. Journal of Machine Learning Research, 7, 705–732.
4. Blanchard, G., Lugosi, G., & Vayatis, N. (2003). On the rate of convergence of regularized boosting classifiers. Journal of Machine Learning Research, 4, 861–894.
5. Breiman, L. (1997). Arcing the edge. Technical Report 486, Statistics Department, University of California, Berkeley.