1. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, J. (2014). Generative Adversarial Networks. in Proceedings of the International Conference on Neural Information Processing Systems (NIPS), pp. 2672—2680.
2. Hu, W., Tan, Y., Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN, [Online]. Available at: https://arxiv.org/pdf/1702.05983.pdf.
3. Guo, S., Zhao, J., Li, X., Duan, J., Mu, D., Jing, X. (2021). A black-box attack method against machine-learning-based anomaly network flow detection models, Security and Communication Networks, 2021(5578335), 13. doi: https://doi.org/10.1155/2021/5578335.
4. Shahpasand, M., Hamey, L., Vatsalan, D., Xue, M. (2019). Adversarial attacks on mobile malware detection. In Proceedings of 2019 IEEE 1st International Workshop on Artificial Intelligence for Mobile (AI4Mobile), pp. 17–20. doi: https://doi.org/10.1109/AI4Mobile.2019.8672711.
5. Kargaard, J., Drange, T., Kor, A., Twafik, H., Butterfield, E. (2018). Defending IT systems against intelligent malware. In Proceedings of 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT) pp. 411–417. doi: https://doi.org/10.1109/DESSERT.2018.8409169.