Author:
Mwanza Mabvuto,Ulgen Koray
Abstract
AbstractLand and environment are some of limited nature resource for any particular country and requires best use. Therefore, for sustainable energy generation it is often important to maximize land use and avoid or minimize environmental and social impact when selecting the potential locations for solar energy harvesting. This chapter presents an approach for identifying and determining the potential sites and available land areas for solar energy harvesting. Hence, the restricting and enhancing parameters that influence sites selection based on international regulation have been imposed to the Laws of Zambia on environmental protection and pollution control legislative framework. Thus, both international regulations and local environmental protection and pollution control legislative have been used for identifying the potential sites and evaluating solar PV electricity generation potential in these potential sites. The restricting parameters were applied to reduce territory areas to feasible potential sites and available areas that are suitable for solar energy harvesting. The assessment involved two different models: firstly the assessment of potential sites and mapping using GIS, and secondly, evaluation of the available suitable land areas and feasible solar PV electricity generation potential in each provinces using analytical methods. The total available suitable area of the potential sites is estimated at 82,564.601 km2 representing 10.97% of Zambia’s total surface area. This potential is equivalent to 10,240.73 TWh annual electricity generation potential with potential to reduce CO2 emissions in the nation and achieve SDGs. The identification of potential sites and solar energy will help improve the understanding of the potential solar energy can contribute to achieving sustainable national energy mix in Zambia. Furthermore, it will help the government in setting up tangible energy targets and effective integration of solar PV systems into national energy mix.
Publisher
Springer International Publishing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献