1. Elsworth, S., Güttel, S.: Time Series Forecasting Using LSTM Networks: A Symbolic Approach (2020). https://arxiv.org/pdf/2003.05672.pdf
2. Bhattacharjya, D., Shanmugam, K., Gao, T., Mattei, N., Varshney, K., Subramanian, D.: Event-driven continuous time bayesian networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no 4, pp. 3259-3266 (2020)
3. Dabrowski, J.J., Zhang, Y., Rahman, A.: ForecastNet: A Time-Variant Deep Feed-Forward Neural Network Architecture for Multi-step-Ahead Time-Series Forecasting. https://arxiv.org/abs/2002.04155
4. Shi, Q., et al.: Block hankel tensor ARIMA for multiple short time series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no 4, pp. 5758-5766 (2020)
5. Zhang, S.Q., Zhou, Z.H.: Harmonic recurrent process for time series forecasting. In: Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 1714-1721 (2020)