Publisher
Springer Nature Switzerland
Reference33 articles.
1. Agrawal, M., Hegselmann, S., Lang, H., Kim, Y., Sontag, D.: Large language models are few-shot clinical information extractors. In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 1998–2022 (Dec 2022)
2. Almazrouei, E., et al.: Falcon-40B: an open large language model with state-of-the-art performance (2023)
3. Auer, S., Oelen, A., Haris, M., Stocker, M., D’Souza, J., Farfar, K.E., Vogt, L., Prinz, M., Wiens, V., Jaradeh, M.Y.: Improving access to scientific literature with knowledge graphs. Bibliothek Forschung und Praxis 44(3), 516–529 (2020). https://doi.org/10.1515/bfp-2020-2042
4. Baudart, G., Kirchner, P.D., Hirzel, M., Kate, K.: Mining documentation to extract hyperparameter schemas. In: Proceedings of the 7th ICML Workshop on Automated Machine Learning (AutoML 2020) (2020)
5. Beltagy, I., Lo, K., Cohan, A.: SciBERT: A pretrained language model for scientific text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3615–3620. Association for Computational Linguistics (Nov 2019). https://doi.org/10.18653/v1/D19-1371