Feature Necessity & Relevancy in ML Classifier Explanations

Author:

Huang XuanxiangORCID,Cooper Martin C.ORCID,Morgado AntonioORCID,Planes JordiORCID,Marques-Silva JoaoORCID

Abstract

AbstractGiven a machine learning (ML) model and a prediction, explanations can be defined as sets of features which are sufficient for the prediction. In some applications, and besides asking for an explanation, it is also critical to understand whether sensitive features can occur in some explanation, or whether a non-interesting feature must occur in all explanations. This paper starts by relating such queries respectively with the problems of relevancy and necessity in logic-based abduction. The paper then proves membership and hardness results for several families of ML classifiers. Afterwards the paper proposes concrete algorithms for two classes of classifiers. The experimental results confirm the scalability of the proposed algorithms.

Publisher

Springer Nature Switzerland

Reference70 articles.

1. Akers, S.B.: Binary decision diagrams. IEEE Transactions on computers27(06), 509–516 (1978)

2. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García,S., Sánchez, L., Herrera, F.: Keel data-mining software tool: data setrepository, integration of algorithms and experimental analysis framework.Journal of Multiple-Valued Logic & Soft Computing 17 (2011), https://sci2s.ugr.es/keel/dataset.php?cod=21

3. Amgoud, L., Ben-Naim, J.: Axiomatic foundations of explainability. In: IJCAI.pp. 636–642 (2022)

4. Arenas, M., Baez, D., Barceló, P., Pérez, J., Subercaseaux, B.:Foundations of symbolic languages for model interpretability. In: NeurIPS(2021)

5. Arenas, M., Barceló, P., Romero, M., Subercaseaux, B.: On computingprobabilistic explanations for decision trees. CoRR abs/2207.12213(2022). 10.48550/arXiv.2207.12213, https://doi.org/10.48550/arXiv.2207.12213

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the failings of Shapley values for explainability;International Journal of Approximate Reasoning;2024-08

2. Disproving XAI Myths with Formal Methods – Initial Results;2023 27th International Conference on Engineering of Complex Computer Systems (ICECCS);2023-06-14

3. Logic-Based Explainability in Machine Learning;Reasoning Web. Causality, Explanations and Declarative Knowledge;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3