Axiomatic Foundations of Explainability

Author:

Amgoud Leila1,Ben-Naim Jonathan1

Affiliation:

1. CNRS, IRIT

Abstract

Improving trust in decisions made by classification models is becoming crucial for the acceptance of automated systems, and an important way of doing that is by providing explanations for the behaviour of the models. Different explainers have been proposed in the recent literature for that purpose, however their formal properties are under-studied. This paper investigates theoretically explainers that provide reasons behind decisions independently of instances. Its contributions are fourfold. The first is to lay the foundations of such explainers by proposing key axioms, i.e., desirable properties they would satisfy. Two axioms are incompatible leading to two subsets. The second contribution consists of demonstrating that the first subset of axioms characterizes a family of explainers that return sufficient reasons while the second characterizes a family that provides necessary reasons. This sheds light on the axioms which distinguish the two types of reasons. As a third contribution, the paper introduces various explainers of both families, and fully characterizes some of them. Those explainers make use of the whole feature space. The fourth contribution is a family of explainers that generate explanations from finite datasets (subsets of the feature space). This family, seen as an abstraction of Anchors and LIME, violates some axioms including one which prevents incorrect explanations.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Counterfactual-Integrated Gradients: Counterfactual Feature Attribution for Medical Records;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

2. A Formal Introduction to Batch-Integrated Gradients for Temporal Explanations;2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI);2023-11-06

3. Disproving XAI Myths with Formal Methods – Initial Results;2023 27th International Conference on Engineering of Complex Computer Systems (ICECCS);2023-06-14

4. A unified logical framework for explanations in classifier systems;Journal of Logic and Computation;2023-01-28

5. A New Class of Explanations for Classifiers with Non-binary Features;Logics in Artificial Intelligence;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3