Author:
Ramli Intan,Abdul Razak Mohd Faizal,Zainol Mohd Zaifulrizal,Ismail Shaiful Bakri
Publisher
Springer Nature Switzerland
Reference10 articles.
1. Ghalib T, Mohamad YY, Sunhaji KA, Yupiter HPM, Bukhari AJ (2012) Predicting the GMAW 3F T-fillet geometry and its welding parameter. Procedia Eng 41:1794–1799
2. Jun X, Guangjun Z, Jianwen H, Lin W (2014) Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. J Intell Manuf 25:157–163
3. Kim IS, Son JS, Kim IG, Kim JY, Kim OS (2003) A study on relationship between process variables and bead penetration for robotic CO2 arc welding. J Mater Process Technol 136:139–145
4. Liu Q, Song J, Hao P (2019) Automatic reading and writing model of welding parameters predicted based on PSO-RFR. IEEE Xplore 387–391
5. Qing S, Fuxing T, Kai L, Tatsuo Y, Guikai G (2021) Multi-objective optimization of MIG welding and preheat parameters for 6061–T6 Al alloy T-joints using artificial neural networks based on FEM. MDPI Coatings 11:1–20