Author:
Bastani Hamsa,Zhang Dennis J.,Zhang Heng
Publisher
Springer International Publishing
Reference167 articles.
1. Abbasi-Yadkori, Y., Pál, D., & Szepesvári, C. (2011). Improved algorithms for linear stochastic bandits. In Advances in Neural Information Processing Systems (pp. 2312–2320).
2. Agrawal, S., Avadhanula, V., Goyal, V., & Zeevi, A. (2019). MNL-bandit: A dynamic learning approach to assortment selection. Operations Research, 67(5), 1453–1485.
3. Agrawal, S., & Devanur, N. R. (2019). Bandits with global convex constraints and objective. Operations Research, 67(5), 1486–1502.
4. Agrawal, S., & Jia, R. (2017) Optimistic posterior sampling for reinforcement learning: Worst-case regret bounds. In Advances in Neural Information Processing Systems (pp. 1184–1194).
5. Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (pp. 207–216).
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献