MNL-Bandit: A Dynamic Learning Approach to Assortment Selection

Author:

Agrawal Shipra1,Avadhanula Vashist2ORCID,Goyal Vineet1,Zeevi Assaf2

Affiliation:

1. Department of Industrial Engineering and Operations Research, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, New York 10027;

2. Decision, Risk, and Operations Division, Columbia Business School, Columbia University, New York, New York 10027

Abstract

We consider a dynamic assortment selection problem where in every round the retailer offers a subset (assortment) of N substitutable products to a consumer, who selects one of these products according to a multinomial logit (MNL) choice model. The retailer observes this choice, and the objective is to dynamically learn the model parameters while optimizing cumulative revenues over a selling horizon of length T. We refer to this exploration–exploitation formulation as the MNL-Bandit problem. Existing methods for this problem follow an explore-then-exploit approach, which estimates parameters to a desired accuracy and then, treating these estimates as if they are the correct parameter values, offers the optimal assortment based on these estimates. These approaches require certain a priori knowledge of “separability,” determined by the true parameters of the underlying MNL model, and this in turn is critical in determining the length of the exploration period. (Separability refers to the distinguishability of the true optimal assortment from the other suboptimal alternatives.) In this paper, we give an efficient algorithm that simultaneously explores and exploits, without a priori knowledge of any problem parameters. Furthermore, the algorithm is adaptive in the sense that its performance is near optimal in the “well-separated” case as well as the general parameter setting where this separation need not hold.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3