Author:
Shamim Rejuwan,Farhaoui Yousef
Publisher
Springer Nature Switzerland
Reference35 articles.
1. Fang, C., Guo, Y., Wang, N., Ju, A.: Highly efficient federated learning with strong privacy preservation in cloud computing. Comput. Secur. 96, 101889 (2020)
2. Fang, H., Qian, Q.: Privacy preserving machine learning with homomorphic encryption and federated learning. Future Internet 13(4), 94 (2021)
3. Liu, L., Zhang, J., Song, S.H., Letaief, K.B.: Client-edge-cloud hierarchical federated learning. In: ICC 2020–2020 IEEE International Conference on Communications (ICC). IEEE, pp. 1–6 (2020, June)
4. Chamikara, M.A.P., Bertok, P., Khalil, I., Liu, D., Camtepe, S.: Privacy preserving distributed machine learning with federated learning. Comput. Commun. 171, 112–125 (2021)
5. Shamim, R., Arshad, M., Pandey, V.: A machine learning model to protect privacy using federal learning with homomorphy encryption
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献