Pique: Recommending a Personalized Sequence of Research Papers to Engage Student Curiosity

Author:

Mohseni Maryam,Maher Mary Lou,Grace Kazjon,Najjar Nadia,Abbas Fakhri,Eltayeby Omar

Publisher

Springer International Publishing

Reference15 articles.

1. Adamopoulos, P., Tuzhilin, A.: On over-specialization and concentration bias of recommendations: probabilistic neighborhood selection in collaborative filtering systems. In Proceedings of the 8th ACM Conference on Recommender Systems, RecSys 2014, pp. 153–160. ACM, New York (2014)

2. Adamopoulos, P., Tuzhilin, A.: On unexpectedness in recommender systems: or how to better expect the unexpected. ACM Trans. Intell. Syst. Technol. 5(4), 32 p. (2014). Article no. 54

3. Blei, D.M., Lafferty, J.D.: A correlated topic model of science. Ann. Appl. Stat. 1(1), 17–35 (2007). https://doi.org/10.1214/07-AOAS114

4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

5. Grace, K., Maher, M.L., Davis, N., Eltayeby, O.: Surprise walks: encouraging users towards novel concepts with sequential suggestions. In: ICCC 2018 International Conference on Computational Creativity. ACC (2018)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring AI-based Computational Models of Novelty to Encourage Curiosity in Student Learning;SN Computer Science;2024-05-17

2. Personalized recommendations for learning activities in online environments: a modular rule-based approach;User Modeling and User-Adapted Interaction;2024-04-06

3. Q-Chef: The impact of surprise-eliciting systems on food-related decision-making;CHI Conference on Human Factors in Computing Systems;2022-04-27

4. Pilot Recommender System Enabling Students to Indirectly Help Each Other and Foster Belonging Through Reflections;LAK22: 12th International Learning Analytics and Knowledge Conference;2022-03-21

5. A Design of a Simple Yet Effective Exercise Recommendation System in K-12 Online Learning;Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3