ADMMLIB: A Library of Communication-Efficient AD-ADMM for Distributed Machine Learning

Author:

Xie Jinyang,Lei Yongmei

Publisher

Springer International Publishing

Reference8 articles.

1. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

2. Chang, T.H., Hong, M., Liao, W.C., Wang, X.: Asynchronous distributed admm for large-scale optimization-part I: algorithm and convergence analysis. IEEE Trans. Signal Process. 64(12), 3118–3130 (2016)

3. Li, M., et al.: Scaling distributed machine learning with the parameter server. In: 11th $$\{$$ USENIX $$\}$$ Symposium on Operating Systems Design and Implementation ( $$\{$$ OSDI $$\}$$ 14), pp. 583–598 (2014)

4. Patarasuk, P., Yuan, X.: Bandwidth optimal all-reduce algorithms for clusters of workstations. J. Parallel Distrib. Comput. 69(2), 117–124 (2009)

5. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in tensorflow. arXiv preprint arXiv:1802.05799 (2018)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Communication-efficient ADMM-based distributed algorithms for sparse training;Neurocomputing;2023-09

2. PSRA-HGADMM: A Communication Efficient Distributed ADMM Algorithm;Proceedings of the 52nd International Conference on Parallel Processing;2023-08-07

3. 2D-THA-ADMM: communication efficient distributed ADMM algorithm framework based on two-dimensional torus hierarchical AllReduce;International Journal of Machine Learning and Cybernetics;2023-06-28

4. A Communication Efficient ADMM-based Distributed Algorithm Using Two-Dimensional Torus Grouping AllReduce;Data Science and Engineering;2023-01-02

5. Distributed ADMM Based on Sparse Computation and Allreduce Communication;2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3