Bandwidth optimal all-reduce algorithms for clusters of workstations

Author:

Patarasuk Pitch,Yuan Xin

Publisher

Elsevier BV

Subject

Artificial Intelligence,Computer Networks and Communications,Hardware and Architecture,Theoretical Computer Science,Software

Reference28 articles.

1. G. Almasi, et al., Optimization of MPI collective communication on BlueGene/L systems, in: International Conference on Supercomputing, ICS, 2005, pp. 253–262

2. Optimal computation of census functions in the postal model;Bar-Noy;Discrete Applied Mathematics,1995

3. Computing global combine operstions in the multiport postal model;Bar-Noy;IEEE Transactions on Parallel and Distributed Systems,1995

4. L. Bongo, O. Anshus, J. Bjorndalen, T. Larsen, Extending collective operations with application semantics for improving multi-cluster performance, in: Proceedings of the Third International Symposium on Parallel and Distributed Computing/Third International Workshop on Algorithms, Models, and Tools for Parallel Computing on Heterogeneous Networks (ISPDC/HeteroPar, 2004, pp. 320–327

5. Efficient global combine operations in multi-port message-passing systems;Bruck;Parallel Processing Letters,1993

Cited by 232 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Inter-Datacenter AllReduce With Multiple Trees;IEEE Transactions on Network Science and Engineering;2024-09

2. Holmes: Towards Distributed Training Across Clusters with Heterogeneous NIC Environment;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

3. SqueezeNIC: Low-Latency In-NIC Compression for Distributed Deep Learning;Proceedings of the 2024 SIGCOMM Workshop on Networks for AI Computing;2024-08-04

4. Crux: GPU-Efficient Communication Scheduling for Deep Learning Training;Proceedings of the ACM SIGCOMM 2024 Conference;2024-08-04

5. Parmesan: Efficient Partitioning and Mapping Flow for DNN Training on General Device Topology;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3