Publisher
Springer Nature Switzerland
Reference17 articles.
1. Safi, A., Singh, S.: A systematic literature review on phishing website detection techniques. J. King Saud Univ. Comput. Inf. Sci. 35(2), 590–611 (2023)
2. Bacanin, N., et al.: Addressing feature selection and extreme learning machine tuning by diversity-oriented social network search: an application for phishing websites detection. Complex Intell. Syst. 9(6), 7269–7304 (2023)
3. Bai, J., et al.: A sinh cosh optimizer. Knowl.-Based Syst. 282, 111081 (2023)
4. Gangavarapu, T., Jaidhar, C.D., Chanduka, B.: Applicability of machine learning in spam and phishing email filtering: review and approaches. Artif. Intell. Rev. 53(7), 5019–5081 (2020)
5. Ahmed, N., Amin, R., Aldabbas, H., Koundal, D., Alouffi, B., Shah, T.: Machine learning techniques for spam detection in email and IoT platforms: analysis and research challenges. Secur. Commun. Netw. 2022, 1862888 (2022)