Applicability of machine learning in spam and phishing email filtering: review and approaches
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Linguistics and Language,Language and Linguistics
Link
http://link.springer.com/content/pdf/10.1007/s10462-020-09814-9.pdf
Reference100 articles.
1. Abu-Nimeh S, Nappa D, Wang X, Nair S (2007) A comparison of machine learning techniques for phishing detection. In: Proceedings of the anti-phishing working groups 2nd annual eCrime researchers summit. ACM, pp 60–69 (2007)
2. Akinyelu AA, Adewumi AO (2014) Classification of phishing email using random forest machine learning technique. J Appl Math. https://doi.org/10.1155/2014/425731
3. Alkaht I, Al-Khatib B (2016) Filtering spam using several stages neural networks. Int Rev Comp Softw 11:2
4. Almeida TA, Yamakami A (2010) Content-based spam filtering. In: The 2010 international joint conference on neural networks (IJCNN). IEEE, pp 1–7 (2010)
5. Apruzzese G, Colajanni M, Ferretti L, Guido A, Marchetti M (2018) On the effectiveness of machine and deep learning for cyber security. In: 2018 10th International conference on cyber conflict (CyCon). IEEE, pp 371–390 (2018)
Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Novel interpretable and robust web-based AI platform for phishing email detection;Computers and Electrical Engineering;2024-12
2. Uncovering phishing attacks using principles of persuasion analysis;Journal of Network and Computer Applications;2024-10
3. Everyday artificial intelligence unveiled: Societal awareness of technological transformation;Oeconomia Copernicana;2024-06-30
4. Analyzing The Impact of Ai-Generated Email Marketing Content on Email Deliverability in Spam Folder Placement;HOLISTICA – Journal of Business and Public Administration;2024-06-01
5. Dynamics and Control Strategies for SLBRS Model of Computer Viruses Based on Complex Networks;International Journal of Intelligent Systems;2024-05-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3