Publisher
Springer Nature Switzerland
Reference12 articles.
1. Zanin, M., Olivares, F.: Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series. Commun. Phys. 4(1), 190 (2021)
2. Bariviera, A.F., Guercio, M.B., Martinez, L.B., Rosso, O.A.: Libor at crossroads: stochastic switching detection using information theory quantifiers. Chaos, Solitons Fractals 88, 172–182 (2016)
3. Pessa, A.A., Ribeiro, H.V.: ordpy: a python package for data analysis with permutation entropy and ordinal network methods. Chaos Interdisc. J. Nonlinear Sci. 31(6), 063110 (2021)
4. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)
5. Mohr, M., Wilhelm, F., Hartwig, M., Möller, R., Keller, K.: New approaches in ordinal pattern representations for multivariate time series. In: The Thirty-Third International Flairs Conference, pp. 124–129 (2020)