Monitoring Human-Wildlife Interactions in National Parks with Crowdsourced Data and Deep Learning

Author:

Pan Bing,Savanapelli Virinchi,Shukla Abhishek,Yin Junjun

Abstract

AbstractThis short paper summarizes the first research stage for applying deep learning techniques to capture human-wildlife interactions in national parks from crowd-sourced data. The results from objection detection, image captioning, and distance calculation are reported. We were able to categorize animal types, summarize visitor behaviors in the pictures, and calculate distances between visitors and animals with different levels of accuracy. Future development will focus on getting more training data and field experiments to collect ground truth on animal types and distances to animals. More in-depth manual coding is needed to categorize visitor behavior into acceptable and unacceptable ones.

Funder

International Federation of IT and Travel Tourism

Publisher

Springer International Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Social media and deep learning reveal specific cultural preferences for biodiversity;People and Nature;2023-03-20

2. Animal Intrusion Detection and Ranging system using YOLOv4 and LoRa;2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS);2022-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3