Concept Study for Vehicle Self-Localization Using Neural Networks for Detection of Pole-Like Landmarks
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-01370-7_54
Reference39 articles.
1. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking. IEEE Trans. Sig. Process. 50(2), 174–188 (2002)
2. Bais, A., Sablatnig, R., Gu, J.: Single landmark based self-localization of mobile robots. In: The 3rd Canadian Conference on Computer and Robot Vision, p. 67. IEEE, Piscataway (2006)
3. Balali, V., Golparvar-Fard, M.: Recognition and 3D localization of traffic signs via image-based point cloud models. In: Ponticelli, S., O’Brien, W.J. (eds.) Computing in Civil Engineering 2015, pp. 206–214. American Society of Civil Engineers, Reston (2015)
4. Bappy, J.H., Roy-Chowdhury, A.K.: CNN based region proposals for efficient object detection. In: 2016 IEEE International Conference on Image Processing, pp. 3658–3662. IEEE, Piscataway (2016)
5. Bazin, J., Laffont, P., Kweon, I., Demonceaux, C., Vasseur, P.: An original approach for automatic plane extraction by omnidirectional vision. In: The IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 752–758. IEEE, Piscataway (2010)
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SLAM und kartenbasierte Lokalisierung;ATZ/MTZ-Fachbuch;2024
2. Global Pose Initialization Based on Gridded Gaussian Distribution With Wasserstein Distance;IEEE Transactions on Intelligent Transportation Systems;2023-05
3. Investigation on Robustness of Vehicle Localization Using Cameras and LiDAR;Vehicles;2022-05-12
4. Pseudo-Anchors: Robust Semantic Features for Lidar Mapping in Highly Dynamic Scenarios;IEEE Transactions on Intelligent Transportation Systems;2022
5. A coding approach to localization using landmarks;GLOBECOM 2020 - 2020 IEEE Global Communications Conference;2020-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3