PASTA: An Efficient Proactive Adaptation Approach Based on Statistical Model Checking for Self-Adaptive Systems

Author:

Shin Yong-JunORCID,Cho EunhoORCID,Bae Doo-HwanORCID

Abstract

AbstractProactive adaptation, in which the adaptation for a system’s reliable goal achievement is performed by predicting changes in the environment, is considered as an effective alternative to reactive adaptation, in which adaptation is performed after observing changes. When predicting the environmental changes, the prediction may be uncertain, so it is necessary to verify and confirm an adaptation’s consequences before execution. To resolve the uncertainty, probabilistic model checking (PMC) has been utilized for verification of adaptation tactics’ effects on the goal of a self-adaptive system (SAS). However, PMC-based approaches have limitations on the state-explosion problem of complex SAS model verification and the modeling languages supported by the model checkers. In this paper, to overcome the limitations of the PMC-based approaches, we propose an efficient Proactive Adaptation approach based on STAtistical model checking (PASTA). Our approach allows SASs to mitigate the uncertainty of the future environment, faster than the PMC-based approach, by producing statistically sufficient samples for verification of adaptation tactics based on statistical model checking (SMC) algorithms. We provide algorithmic processes, a reference architecture, and an open-source implementation skeleton of PASTA for engineers to apply it for SAS development. We evaluate PASTA on two SASs using actual data and show that PASTA is efficient comparing to the PMC-based approach. We also provide a comparative analysis of the advantages and disadvantages of PMC- and SMC-based proactive adaptation to guide engineers’ decision-making for SAS development.

Publisher

Springer International Publishing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Virtual Environment Model Generation for CPS Goal Verification using Imitation Learning;ACM Transactions on Embedded Computing Systems;2024-01-10

2. A Proactive Self-Adaptation Approach for Software Systems based on Environment-Aware Model Predictive Control;2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS);2022-12

3. Hands-On Field Operational Test Dataset of a Multi-Controller CPS: A Modeled Case Study on Autonomous Driving;2022 17th Annual System of Systems Engineering Conference (SOSE);2022-06-07

4. Anomaly-Aware Adaptation Approach for Self-Adaptive Cyber-Physical System of Systems Using Reinforcement Learning;2022 17th Annual System of Systems Engineering Conference (SOSE);2022-06-07

5. Threat Modelling with the GDPR towards a Security and Privacy Metrics Framework for IoT Smart-farm Application;Proceedings of the 7th International Conference on Internet of Things, Big Data and Security;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3