Engineering Secure Self-Adaptive Systems with Bayesian Games

Author:

Li Nianyu,Zhang Mingyue,Kang Eunsuk,Garlan David

Abstract

AbstractSecurity attacks present unique challenges to self-adaptive system design due to the adversarial nature of the environment. Game theory approaches have been explored in security to model malicious behaviors and design reliable defense for the system in a mathematically grounded manner. However, modeling the system as a single player, as done in prior works, is insufficient for the system under partial compromise and for the design of fine-grained defensive strategies where the rest of the system with autonomy can cooperate to mitigate the impact of attacks. To deal with such issues, we propose a new self-adaptive framework incorporating Bayesian game theory and model the defender (i.e., the system) at the granularity ofcomponents. Under security attacks, the architecture model of the system is translated into aBayesian multi-player game, where each component is explicitly modeled as an independent player while security attacks are encoded as variant types for the components. The optimal defensive strategy for the system is dynamically computed by solving the pure equilibrium (i.e., adaptation response) to achieve the best possible system utility, improving the resiliency of the system against security attacks. We illustrate our approach using an example involving load balancing and a case study on inter-domain routing.

Publisher

Springer International Publishing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Game-Theoretical Self-Adaptation Framework for Securing Software-Intensive Systems;ACM Transactions on Autonomous and Adaptive Systems;2024-04-20

2. Privacy-preserving Resilient Consensus for Multi-agent Systems in a General Topology Structure;ACM Transactions on Privacy and Security;2023-06-26

3. Preference Adaptation: user satisfaction is all you need!;2023 IEEE/ACM 18th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS);2023-05

4. Resilient Mechanism Against Byzantine Failure for Distributed Deep Reinforcement Learning;2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3