Privacy-preserving Resilient Consensus for Multi-agent Systems in a General Topology Structure

Author:

Hou Jian1ORCID,Wang Jing1ORCID,Zhang Mingyue2ORCID,Jin Zhi2ORCID,Wei Chunlin3ORCID,Ding Zuohua1ORCID

Affiliation:

1. Zhejiang Sci-Tech University, China

2. Peking University, China

3. Beijing Institute of Control Engineering, China

Abstract

Recent advances of consensus control have made it significant in multi-agent systems such as in distributed machine learning, distributed multi-vehicle cooperative systems. However, during its application it is crucial to achieve resilience and privacy; specifically, when there are adversary/faulty nodes in a general topology structure, normal agents can also reach consensus while keeping their actual states unobserved. In this article, we modify the state-of-the-art Q-consensus algorithm by introducing predefined noise or well-designed cryptography to guarantee the privacy of each agent state. In the former case, we add specified noise on agent state before it is transmitted to the neighbors and then gradually decrease the value of noise so the exact agent state cannot be evaluated. In the latter one, the Paillier cryptosystem is applied for reconstructing reward function in two consecutive interactions between each pair of neighboring agents. Therefore, multi-agent privacy-preserving resilient consensus (MAPPRC) can be achieved in a general topology structure. Moreover, in the modified version, we reconstruct reward function and credibility function so both convergence rate and stability of the system are improved. The simulation results indicate the algorithms’ tolerance for constant and/or persistent faulty agents as well as their protection of privacy. Compared with the previous studies that consider both resilience and privacy-preserving requirements, the proposed algorithms in this article greatly relax the topological conditions. At the end of the article, to verify the effectiveness of the proposed algorithms, we conduct two sets of experiments, i.e., a smart-car hardware platform consisting of four vehicles and a distributed machine learning platform containing 10 workers and a server.

Funder

National Key R&D Program of China

Science and Technology on Space Intelligent Control Laboratory

National Nature Science Foundation of China

Zhejiang Provincial Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Reference38 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3