Author:
Mouthami K.,Yuvaraj N.,Pooja R. I.
Publisher
Springer Nature Switzerland
Reference18 articles.
1. Pliszczuk, D., Lesiak, P., Zuk, K., Cieplak, T.: Forecasting sales in the supply chain based on the LSTM network: the case of furniture industry. Eur. Res. Stud. J. 0(2), 627–636 (2021)
2. Ensafi, Y., Amin, S.H., Zhang, G., Shah, B.: Time-series forecasting of seasonal items sales using machine learning – a comparative analysis. Int. J. Inf. Manag. Data Insights 2, 2667–0968 (2021)
3. Mitra, A., Jain, A., Kishore, A., et al.: A comparative study of demand forecasting models for a multi-channel retail company: a novel hybrid machine learning approach. Oper. Res. Forum 3, 58 (2022)
4. Ungureanu, S., Topa, V., Cziker, A.C.: Deep Learning for Short-Term Load Forecasting—Industrial Consumer Case Study, vol. 21, p. 10126 (2021)
5. Haselbeck, F., Killinger, J., Menrad, K., Hannus, T., Grimm, D.G.: Machine learning outperforms classical forecasting on horticultural sales predictions. Mach. Learn. Appl. 7, 2666–8270 (2022)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献