1. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020)
2. Kusner, M.J., Hernández-Lobato, J.M.: GANs for sequences of discrete elements with the gumbel-softmax distribution. arXiv arXiv:1611.04051 (2016)
3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv arXiv:1701.07875 (2017)
4. Diao, S., Shen, X., Shum, K., et al.: TILGAN: transformer-based implicit latent GAN for diverse and coherent text generation. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 4844–4858 (2021)
5. Nie, W., Narodytska, N., Patel, A.: RelGAN: relational generative adversarial networks for text generation. In: Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018