1. Baskin, C., et al.: UNIQ: uniform noise injection for the quantization of neural networks (2018). CoRR abs/1804.10969. http://arxiv.org/abs/1804.10969
2. Bengio, Y., Léonard, N., Courville, A.C.: Estimating or propagating gradients through stochastic neurons for conditional computation (2013). CoRR abs/1308.3432. http://arxiv.org/abs/1308.3432
3. Bethge, J., Bartz, C., Yang, H., Chen, Y., Meinel, C.: MeliusNet: can binary neural networks achieve mobilenet-level accuracy? (2020). arXiv:2001.05936
4. Dai, B., Zhu, C., Guo, B., Wipf, D.: Compressing neural networks using the variational information bottleneck. In: International Conference on Machine Learning, pp. 1135–1144 (2018)
5. Dong, Z., et al.: HAWQ-V2: hessian aware trace-weighted quantization of neural networks (2019). arXiv:1911.03852