A geometric approach for accelerating neural networks designed for classification problems

Author:

Saffar Mohsen,Kalhor Ahmad,Habibnia Ali

Abstract

AbstractThis paper proposes a geometric-based technique for compressing convolutional neural networks to accelerate computations and improve generalization by eliminating non-informative components. The technique utilizes a geometric index called separation index to evaluate the functionality of network elements such as layers and filters. By applying this index along with center-based separation index, a systematic algorithm is proposed that optimally compresses convolutional and fully connected layers. The algorithm excludes layers with low performance, selects the best subset of filters in the filtering layers, and tunes the parameters of fully connected layers using center-based separation index. An illustrative example of classifying CIFAR-10 dataset is presented to explain the algorithm step-by-step. The proposed method achieves impressive pruning results on networks trained by CIFAR-10 and ImageNet datasets, with 87.5%, 77.6%, and 78.8% of VGG16, GoogLeNet, and DenseNet parameters pruned, respectively. Comparisons with state-of-the-art works are provided to demonstrate the effectiveness of the proposed method.

Publisher

Springer Science and Business Media LLC

Reference75 articles.

1. O’Shea, K. & Nash, R. An introduction to convolutional neural networks (2015). arXiv preprint arXiv:1511.08458

2. Liu, X., Deng, Z. & Yang, Y. Recent progress in semantic image segmentation. Artif. Intell. Rev. 52(2), 1089–1106 (2019).

3. Yu, D. et al., Deep convolutional neural networks with layer-wise context expansion and attention. In Interspeech 17–21 (2016).

4. Gupta, S., Agrawal, A., Gopalakrishnan, K. & Narayanan, P. Deep learning with limited numerical precision. In: International Conference on Machine Learning 1737–1746 (2015).

5. Han, S., Mao, H. & Dally, W. J. Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding (2015). arXiv preprint arXiv:1510.00149

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3