Author:
Dyankov Deyan,Riccio Salvatore Danilo,Di Fatta Giuseppe,Nicosia Giuseppe
Publisher
Springer International Publishing
Reference21 articles.
1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective optimization: theoretical foundations and practical implications. Theoret. Comput. Sci. 425, 75–103 (2012)
2. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–259 (2013)
3. Brockman, G., et al.: Openai gym (2016)
4. Caruana R.: Multitask learning. In: Thrun S., Pratt L. (eds) Learning to Learn, pp. 95–133. Springer, Boston (1998).
https://doi.org/10.1007/978-1-4615-5529-2_5
5. Conti, E., Madhavan, V., Petroski Such, F., Lehman, J., Stanley, K.O., Clune, J.: Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents. In: NeurIPS 2018, Montreal, Canada (2018)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-Task Deep Learning as Multi-Objective Optimization;Encyclopedia of Optimization;2023
2. MOPINNs;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2022-07-09
3. Pareto Multi-task Deep Learning;Artificial Neural Networks and Machine Learning – ICANN 2020;2020