Conditional Anomaly Detection for Quality and Productivity Improvement of Electronics Manufacturing Systems
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-37599-7_59
Reference17 articles.
1. Hao, W.: Solder joint defect classification based on ensemble learning. Solder. Surf. Mt. Technol. 29, 06 (2017)
2. Acciani, G., Brunetti, G., Fornarelli, G.: A multiple neural network system to classify solder joints on integrated circuits. Int. J. Comput. Intell. Res. 2, 337–348 (2006)
3. Hao, W., Xianmin, Z., Yongcong, K., Gaofei, O., Hongwei, X.: Solder joint inspection based on neural network combined with genetic algorithm. Optik 124(20), 4110–4116 (2013)
4. Song, J.-D., Kim, Y.-G., Park, T.-H.: SMT defect classification by feature extraction region optimization and machine learning. Int. J. Adv. Manuf. Technol. 101, 1303–1313 (2018)
5. Jiang, J., Cheng, J., Tao, D.: Color biological features-based solder paste defects detection and classification on printed circuit boards. IEEE Trans. Componen. Packag. Manuf. Technol. 2(9), 1536–1544 (2012)
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Development and validation of a digital twin framework for SMT manufacturing;Computers in Industry;2023-02
2. Solder Joint Inspection on Printed Circuit Boards: A Survey and a Dataset;IEEE Transactions on Instrumentation and Measurement;2023
3. Deep embedding kernel mixture networks for conditional anomaly detection in high-dimensional data;International Journal of Production Research;2022-02-18
4. Contextual anomaly detection for high-dimensional data using Dirichlet process variational autoencoder;IISE Transactions;2022-02-15
5. Machine Learning for Failure Analysis: A Mathematical Modelling Perspective;Association for Women in Mathematics Series;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3