Insights from Computational Modelling: Selective Stimulation of Retinal Ganglion Cells

Author:

Guo Tianruo,Tsai David,Bai Siwei,Shivdasani Mohit,Muralidharan Madhuvanthi,Li Liming,Dokos Socrates,Lovell Nigel H.

Abstract

AbstractImprovements to the efficacy of retinal neuroprostheses can be achieved by developing more sophisticated neural stimulation strategies to enable selective or differential activation of specific retinal ganglion cells (RGCs). Recent retinal studies have demonstrated the ability to differentially recruit ON and OFF RGCs – the two major information pathways of the retina – using high-frequency electrical stimulation (HFS). However, there remain many unknowns, since this is a relatively unexplored field. For example, can we achieve ON/OFF selectivity over a wide range of stimulus frequencies and amplitudes? Furthermore, existing demonstrations of HFS efficacy in retinal prostheses have been based on epiretinal placement of electrodes. Other clinically popular techniques include subretinal or suprachoroidal placement, where electrodes are located at the photoreceptor layer or in the suprachoroidal space, respectively, and these locations are quite distant from the RGC layer. Would HFS-based differential activation work from these locations? In this chapter, we conducted in silico investigations to explore the generalizability of HFS to differentially active ON and OFF RGCs. Computational models are particularly well suited for these investigations. The electric field can be accurately described by mathematical formulations, and simulated neurons can be “probed” at resolutions well beyond those achievable by today’s state-of-the-art experimental techniques.

Funder

TBD

Publisher

Springer International Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3