Publisher
Springer Nature Switzerland
Reference27 articles.
1. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)
2. Lago, F., Pasquini, C., Böhme, R., Dumont, H., Goffaux, V., Boato, G.: More real than real: a study on human visual perception of synthetic faces [applications corner]. IEEE Signal Process. Mag. 39(1), 109–116 (2021)
3. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of styleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)
4. Hancock, J.T., Bailenson, J.N.: The social impact of DeepFakes. Cyberpsychol. Behav. Soc. Netw. 24(3), 149–152 (2021). PMID: 33760669
5. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Advances in Neural Information Processing, vol. 34, pp. 8780–8794 (2021)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. GAN and DM Generated Synthetic Image Detection in the Age of Misinformation;Lecture Notes in Computer Science;2024
2. Diffusion Model for Image Generation - A Survey;2023 2nd International Conference on Artificial Intelligence, Human-Computer Interaction and Robotics (AIHCIR);2023-12-08