Land Cover Classification Using CNN and Semantic Segmentation: A Case of Study in Antioquia, Colombia
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-99170-8_22
Reference35 articles.
1. METODOLOGÍA CORINE LAND COVER - IDEAM (2021). http://www.ideam.gov.co/web/ecosistemas/metodologia-corine-land-cover. Accessed 15 Nov 2021
2. Andrade, J., Cunha, J., Silva, J., Rufino, I., Galvão, C.: Evaluating single and multi-date landsat classifications of land-cover in a seasonally dry tropical forest. Remote Sens. Appl. Soc. Environ. 22, 100515 (2021)
3. Backoulou, G.F., Elliott, N.C., Giles, K.L., Mirik, M.: Processed multispectral imagery differentiates wheat crop stress caused by greenbug from other causes. Comput. Electronics in Agriculture 115, 34–39 (2015)
4. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7, 2094–2107 (2014). https://doi.org/10.1109/JSTARS.2014.2329330
5. Clerici, N., Valbuena Calderón, C.A., Posada, J.M.: Fusion of sentinel-1a and sentinel-2a data for land cover mapping: a case study in the lower Magdalena region, Colombia. J. Maps 13(2), 718–726 (2017). https://www.doi.org/10.1080/17445647.2017.1372316. https://www.tandfonline.com/doi/pdf/10.1080/17445647.2017.1372316?needAccess=true
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Land Cover Classification Using Remote Sensing and Supervised Convolutional Neural Networks;Communications in Computer and Information Science;2023-11-14
2. Harvesting the Landsat archive for land cover land use classification using deep neural networks: Comparison with traditional classifiers and multi-sensor benefits;ISPRS Journal of Photogrammetry and Remote Sensing;2023-06
3. Convolutional Neural Network Shows Greater Spatial and Temporal Stability in Multi-Annual Land Cover Mapping Than Pixel-Based Methods;Remote Sensing;2023-04-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3