Convolutional Neural Network Shows Greater Spatial and Temporal Stability in Multi-Annual Land Cover Mapping Than Pixel-Based Methods

Author:

Boston Tony1ORCID,Van Dijk Albert1,Thackway Richard1ORCID

Affiliation:

1. Fenner School of Environment and Society, Australian National University, Acton, ACT 2601, Australia

Abstract

Satellite imagery is the only feasible approach to annual monitoring and reporting on land cover change. Unfortunately, conventional pixel-based classification methods based on spectral response only (e.g., using random forests algorithms) have shown a lack of spatial and temporal stability due, for instance, to variability between individual pixels and changes in vegetation condition, respectively. Machine learning methods that consider spatial patterns in addition to reflectance can address some of these issues. In this study, a convolutional neural network (CNN) model, U-Net, was trained for a 500 km × 500 km region in southeast Australia using annual Landsat geomedian data for the relatively dry and wet years of 2018 and 2020, respectively. The label data for model training was an eight-class classification inferred from a static land-use map, enhanced using forest-extent mapping. Here, we wished to analyse the benefits of CNN-based land cover mapping and reporting over 34 years (1987–2020). We used the trained model to generate annual land cover maps for a 100 km × 100 km tile near the Australian Capital Territory. We developed innovative diagnostic methods to assess spatial and temporal stability, analysed how the CNN method differs from pixel-based mapping and compared it with two reference land cover products available for some years. Our U-Net CNN results showed better spatial and temporal stability with, respectively, overall accuracy of 89% verses 82% for reference pixel-based mapping, and 76% of pixels unchanged over 33 years. This gave a clearer insight into where and when land cover change occurred compared to reference mapping, where only 30% of pixels were conserved. Remaining issues include edge effects associated with the CNN method and a limited ability to distinguish some land cover types (e.g., broadacre crops vs. pasture). We conclude that the CNN model was better for understanding broad-scale land cover change, use in environmental accounting and natural resource management, whereas pixel-based approaches sometimes more accurately represented small-scale changes in land cover.

Funder

Australian Government Research Training Program (RTP) Scholarship

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference56 articles.

1. Cresswell, I.D., Janke, T., and Johnston, E.L. (2021). Australia State of the Environment 2021: Overview, Commonwealth of Australia. Independent Report to the Australian Government Minister for the Environment.

2. Lots of Loss with Little Scrutiny: The Attrition of Habitat Critical for Threatened Species in Australia;Ward;Conserv. Sci Pract.,2019

3. Thackway, R. (2018). Land Use in Australia: Past, Present and Future, ANU Press. Available online: https://press.anu.edu.au/publications/land-use-australia.

4. Global Land Cover Characterization from Satellite Data: From Research to Operational Implementation? GCTE/LUCC Research Review;Defries;Glob. Ecol. Biogeogr.,1999

5. Random Forests;Breiman;Mach. Learn.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3