Publisher
Springer Nature Switzerland
Reference10 articles.
1. Barlas, P., Kyriakou, K., Guest, O., Kleanthous, S., Otterbacher, J.: To “See” is to stereotype: image tagging algorithms, gender recognition, and the accuracy-fairness trade-off. In: Proceedings of the ACM on Human-Computer Interaction, vol. 4. no. CSCW3, pp. 232:1–232:31 (2021). https://doi.org/10.1145/3432931
2. Barlas, P., Kyriakou, K., Kleanthous, S., Otterbacher, J.: Person, human, neither: the dehumanization potential of automated image tagging. In: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 357–367. AIES 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3461702.3462567
3. Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Proceedings of the 1st Conference on Fairness, Accountability and Transparency, pp. 77–91. PMLR (2018). https://proceedings.mlr.press/v81/buolamwini18a.html iSSN: 2640-3498
4. Carrera, F.: Race and gender of aesthetics and affections: algorithmization of racism and sexism in contemporary digital image databases. MATRIZes 14(2), 217–240 (2020). https://doi.org/10.11606/issn.1982-8160.v14i2p217-240. https://www.revistas.usp.br/matrizes/article/view/167187
5. Castelnovo, A., Crupi, R., Greco, G., Regoli, D., Penco, I.G., Cosentini, A.C.: A clarification of the nuances in the fairness metrics landscape. Sci. Rep. 12(1), 4209 (2022). https://doi.org/10.1038/s41598-022-07939-1. https://www.nature.com/articles/s41598-022-07939-1. number: 1 Publisher: Nature Publishing Group