1. Malaria Microscopy Quality Assurance Manual, version 2. World Health Organization (2016)
2. World Malaria Report. World Health Organization (2016)
3. O’Meara, W.P., Mckenzie, F.E., Magill, A.J., Forney, J.R., Permpanich, B., Lucas, C., Gasser, R.A., Wongsrichanalai, C.: Sources of variability in determining malaria parasite density by microscopy. Am. J. Trop. Med. Hyg. 73(3), 593–598 (2005)
4. Rajaraman, S., Antani, S.K., Xue, Z., Candemir, S., Jaeger, S., Thoma, G.R.: Visualizing abnormalities in chest radiographs through salient network activations in deep learning. In: Life Sciences Conference, IEEE, Australia, pp. 71–74 (2017)
5. Liang, Z., Powell, A., Ersoy, I., Poostchi, M., Silamut, K., Palaniappan, K., Guo, P., Hossain, M.A., Sameer, A., Maude, R.J., Huang, J.X., Jaeger, S., Thoma, G.: CNN-based image analysis for malaria diagnosis. In: International Conference on Bioinformatics and Biomedicine, IEEE, China, pp. 493–496 (2016)