Swift Diagnose: A High-Performance Shallow Convolutional Neural Network for Rapid and Reliable SARS-COV-2 Induced Pneumonia Detection
-
Published:2024-03-28
Issue:
Volume:10
Page:
-
ISSN:2411-7145
-
Container-title:EAI Endorsed Transactions on Pervasive Health and Technology
-
language:
-
Short-container-title:EAI Endorsed Trans Perv Health Tech
Author:
Dutta Koustav,Lenka Rasmita,Gupta Priya,Goel Aarti,Naga Ramesh Janjhyam Venkata
Abstract
INTRODUCTION: The SARS-COV-2 pandemic has led to a significant increase in the number of infected individuals and a considerable loss of lives. Identifying SARS-COV-2-induced pneumonia cases promptly is crucial for controlling the virus's spread and improving patient care. In this context, chest X-ray imaging has become an essential tool for detecting pneumonia caused by the novel coronavirus.
OBJECTIVES: The primary goal of this research is to differentiate between pneumonia cases induced specifically by the SARS-COV-2 virus and other types of pneumonia or healthy cases. This distinction is vital for the effective treatment and isolation of affected patients.
METHODS: A streamlined stacked Convolutional Neural Network (CNN) architecture was employed for this study. The dataset, meticulously curated from Johns Hopkins University's medical database, comprised 2292 chest X-ray images. This included 542 images of COVID-19-infected cases and 1266 non-COVID cases for the training phase, and 167 COVID-infected images plus 317 non-COVID images for the testing phase. The CNN's performance was assessed against a well-established CNN model to ensure the reliability of the findings.
RESULTS: The proposed CNN model demonstrated exceptional accuracy, with an overall accuracy rate of 98.96%. In particular, the model achieved a per-class accuracy of 99.405% for detecting SARS-COV-2-infected cases and 98.73% for identifying non-COVID cases. These results indicate the model's significant potential in distinguishing between COVID-19-related pneumonia and other conditions.
CONCLUSION: The research validates the efficacy of using a specialized CNN architecture for the rapid and precise identification of SARS-COV-2-induced pneumonia from chest X-ray images. The high accuracy rates suggest that this method could be a valuable tool in the ongoing fight against the COVID-19 pandemic, aiding in the swift diagnosis and effective treatment of patients.
Publisher
European Alliance for Innovation n.o.
Reference36 articles.
1. Xie, X., Zhong, Z., Zhao, W., Zheng, C., Wang, F., & Liu, J. (2020). Chest CT for Typi-cal Coronavirus Disease 2019 (SARS-COV-2) Pneumonia: Relationship to Negative RT-PCR Testing. Radiology, 296(2), E41-E45. https://doi.org/10.1148/radiol.2020200343 2. Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., & Ji, W. (2020). Sensitivity of Chest CT for SARS-COV-2: Comparison to RT-PCR. Radiology, 296(2), E115-E117. https://doi.org/10.1148/radiol.2020200432 3. Eastin, C., & Eastin, T. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. The Journal Of Emergency Medicine, 58(4), 711-712. https://doi.org/10.1016/j.jemermed.2020.04.004 4. Swapnarekha, H., Behera, H., Nayak, J., & Naik, B. (2020). Role of intelligent compu-ting in SARS-COV-2 prognosis: A state-of-the-art review. Chaos, Solitons & Frac-tals, 138, 109947. https://doi.org/10.1016/j.chaos.2020.109947 5. Mohamadou, Y., Halidou, A., & Kapen, P. (2020). A review of mathematical modeling, artificial intelligence, and datasets used in the study, prediction, and management of SARS-COV-2. Applied Intelligence, 50(11), 3913-3925. https://doi.org/10.1007/s10489-020-01770-9
|
|