On Eventual Non-negativity and Positivity for the Weighted Sum of Powers of Matrices

Author:

Akshay S.ORCID,Chakraborty SupratikORCID,Pal DebtanuORCID

Abstract

AbstractThe long run behaviour of linear dynamical systems is often studied by looking at eventual properties of matrices and recurrences that underlie the system. A basic problem in this setting is as follows: given a set of pairs of rational weights and matrices$$\{(w_1, A_1), \ldots , (w_m, A_m)\}$${(w1,A1),,(wm,Am)}, does there exist an integerNs.t for all$$n \ge N$$nN,$$\sum _{i=1}^m w_i\cdot A_i^n \ge 0$$i=1mwi·Ain0(resp.$$> 0$$>0). We study this problem, its applications and its connections to linear recurrence sequences. Our first result is that for$$m\ge 2$$m2, the problem is as hard as the ultimate positivity of linear recurrences, a long standing open question (known to be$$\mathsf {coNP}$$coNP-hard). Our second result is that for any$$m\ge 1$$m1, the problem reduces to ultimate positivity of linear recurrences. This yields upper bounds for several subclasses of matrices by exploiting known results on linear recurrence sequences. Our third result is a general reduction technique for a large class of problems (including the above) from diagonalizable case to the case where the matrices are simple (have non-repeated eigenvalues). This immediately gives a decision procedure for our problem for diagonalizable matrices.

Publisher

Springer International Publishing

Reference39 articles.

1. Akshay, S., Antonopoulos, T., Ouaknine, J., Worrell, J.: Reachability problems for Markov chains. Inf. Process. Lett. 115(2), 155–158 (2015)

2. Akshay, S., Balaji, N., Murhekar, A., Varma, R., Vyas, N.: Near optimal complexity bounds for fragments of the Skolem problem. In: Paul, S., Bläser, M. (eds.) 37th International Symposium on Theoretical Aspects of Computer Science, STACS 2020, 10–13 March 2020, Montpellier, France, volume 154 of LIPIcs, pp. 37:1–37:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

3. Akshay, S., Chakraborty, S., Pal, D.: On eventual non-negativity and positivity for the weighted sum of powers of matrices. arXiv preprint arXiv:2205.09190 (2022)

4. Akshay, S., Genest, B., Karelovic, B., Vyas, N.: On regularity of unary probabilistic automata. In: 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, 17–20 February 2016, Orléans, France, volume 47 of LIPIcs, pp. 8:1–8:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

5. S. Akshay, Blaise Genest, and Nikhil Vyas. Distribution based objectives for Markov decision processes. In: 33rd Symposium on Logic in Computer Science (LICS 2018), vol. IEEE, pp. 36–45 (2018)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3