Fair Refinement for Asynchronous Session Types

Author:

Bravetti MarioORCID,Lange JulienORCID,Zavattaro GianluigiORCID

Abstract

AbstractSession types are widely used as abstractions of asynchronous message passing systems. Refinement for such abstractions is crucial as it allows improvements of a given component without compromising its compatibility with the rest of the system. In the context of session types, the most general notion of refinement is the asynchronous session subtyping, which allows to anticipate message emissions but only under certain conditions. In particular, asynchronous session subtyping rules out candidates subtypes that occur naturally in communication protocols where, e.g., two parties simultaneously send each other a finite but unspecified amount of messages before removing them from their respective buffers. To address this shortcoming, we study fair compliance over asynchronous session types and fair refinement as the relation that preserves it. This allows us to propose a novel variant of session subtyping that leverages the notion of controllability from service contract theory and that is a sound characterisation of fair refinement. In addition, we show that both fair refinement and our novel subtyping are undecidable. We also present a sound algorithm, and its implementation, which deals with examples that feature potentially unbounded buffering.

Publisher

Springer International Publishing

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Preciseness of Subtyping in Session Types: 10 Years Later;Proceedings of the 26th International Symposium on Principles and Practice of Declarative Programming;2024-09-09

2. Deciding Subtyping for Asynchronous Multiparty Sessions;Lecture Notes in Computer Science;2024

3. Asynchronous Subtyping by Trace Relaxation;Lecture Notes in Computer Science;2024

4. Fair termination of binary sessions;Proceedings of the ACM on Programming Languages;2022-01-12

5. Fair Refinement for Asynchronous Session Types;Lecture Notes in Computer Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3