Publisher
Springer International Publishing
Reference35 articles.
1. Abdi, L., Hashemi, S.: To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans. Knowl. Data Eng. 28(1), 238–251 (2016)
2. Agrawal, A., Herna, L.V., Paquet, E.: SCUT: multi-class imbalanced data classification using SMOTE and cluster-based undersampling. In: International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), vol. 01, pp. 226–234 (2015)
3. Brzezinski, D., Minku, L.L., Pewinski, T., Stefanowski, J., Szumaczuk, A.: The impact of data difficulty factors on classification of imbalanced and concept drifting data streams. Knowl. Inf. Syst. 63(6), 1429–1469 (2021)
4. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. CoRR abs/1710.05381 (2017)
5. Fernández, A., García, S., Galar, M., Prati, R.C., Krawczyk, B., Herrera, F.: Learning from Imbalanced Data Sets. Springer, Heidelberg (2018)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献