MP-IDB: The Malaria Parasite Image Database for Image Processing and Analysis
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-13835-6_7
Reference8 articles.
1. Di Ruberto, C., Loddo, A., Putzu, L.: A leucocytes count system from blood smear images: segmentation and counting of white blood cells based on learning by sampling. Mach. Vis. and Appl. 27(8), 1151–1160 (2016)
2. Khan, N., Pervaz, H., Latif, A., Musharraf, A., Saniya: Unsupervised identification of malaria parasites using computer vision. In: Proceedings of the 2014 11th International Joint Conference on Computer Science and Software Engineering, pp. 263–267 (2014)
3. Labati, R.D., Piuri, V., Scotti, F.: All-IDB: the acute lymphoblastic leukemia image database for image processing. In: 18th IEEE International Conference on Image Processing, pp. 2045–2048, September 2011. https://doi.org/10.1109/ICIP.2011.6115881
4. Loddo, A., Di Ruberto, C., Kocher, M.: Recent advances of malaria parasites detection systems based on mathematical morphology. Sensors 18(2), 513 (2018)
5. Rosado, L., da Costa, J.M.C., Elias, D., Cardoso, J.S.: A review of automatic malaria parasites detection and segmentation in microscopic images. Anti-Infect. Agents 14, 11–22 (2016)
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A lightweight deep learning architecture for malaria parasite-type classification and life cycle stage detection;Neural Computing and Applications;2024-08-08
2. Tradescantia response to air and soil pollution, stamen hair cells dataset and ANN color classification;Frontiers in Big Data;2024-05-15
3. Microscopic parasite malaria classification using best feature selection based on generalized normal distribution optimization;PeerJ Computer Science;2024-01-05
4. Ensembling Object Detection Models for Robust and Reliable Malaria Parasite Detection in Thin Blood Smear Microscopic Images;IEEE Access;2024
5. MTANet: Multi-Type Attention Ensemble for Malaria Parasite Detection;Lecture Notes in Computer Science;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3