A lightweight deep learning architecture for malaria parasite-type classification and life cycle stage detection

Author:

Chaudhry Hafiza Ayesha HoorORCID,Farid Muhammad Shahid,Fiandrotti Attilio,Grangetto Marco

Abstract

AbstractMalaria is an endemic in various tropical countries. The gold standard for disease detection is to examine the blood smears of patients by an expert medical professional to detect malaria parasite called Plasmodium. In the rural areas of underdeveloped countries, with limited infrastructure, a scarcity of healthcare professionals, an absence of sufficient computing devices, and a lack of widespread internet access, this task becomes more challenging. A severe case of malaria can be fatal within one week, so the correct detection of the malaria parasite and its life cycle stage is crucial in treating the disease correctly. Though computer vision-based malaria detection has been adequately explored lately, the malaria life cycle stage classification is still a relatively unexplored field. In this paper, we introduce a fast and robust deep learning methodology to not only classify the malaria parasite-type detection but also the life cycle stage identification of the infected cell. The proposed deep learning architecture is more than twenty times lighter than the widely used DenseNet and has less than 0.4 million parameters, making it a good candidate to be used in the mobile applications of such economically challenged states for malaria detection. We have used four different publicly available malaria datasets to test the proposed architecture and gained significantly better results than the current state of the art on malaria parasite-type and malaria life cycle classification.

Funder

Università degli Studi di Torino

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3