Directed Reachability for Infinite-State Systems

Author:

Blondin MichaelORCID,Haase ChristophORCID,Offtermatt PhilipORCID

Abstract

AbstractNumerous tasks in program analysis and synthesis reduce to deciding reachability in possibly infinite graphs such as those induced by Petri nets. However, the Petri net reachability problem has recently been shown to require non-elementary time, which raises questions about the practical applicability of Petri nets as target models. In this paper, we introduce a novel approach for efficiently semi-deciding the reachability problem for Petri nets in practice. Our key insight is that computationally lightweight over-approximations of Petri nets can be used as distance oracles in classical graph exploration algorithms such as $$\mathsf {A}^{*}$$ A and greedy best-first search. We provide and evaluate a prototype implementation of our approach that outperforms existing state-of-the-art tools, sometimes by orders of magnitude, and which is also competitive with domain-specific tools on benchmarks coming from program synthesis and concurrent program analysis.

Publisher

Springer International Publishing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A State-of-the-Art Karp-Miller Algorithm Certified in Coq;Lecture Notes in Computer Science;2024

2. Verifying linear temporal specifications of constant-rate multi-mode systems;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

3. Coverability in 2-VASS with One Unary Counter is in NP;Lecture Notes in Computer Science;2023

4. Guiding Symbolic Execution with A-Star;Software Engineering and Formal Methods;2023

5. Fast Termination and Workflow Nets;Computer Aided Verification;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3