Fast Termination and Workflow Nets

Author:

Hofman PiotrORCID,Mazowiecki FilipORCID,Offtermatt PhilipORCID

Abstract

AbstractPetri nets are an established model of concurrency. A Petri net is terminating if for every initial marking there is a uniform bound on the length of all possible runs. Recent work on the termination of Petri nets suggests that, in general, practical models should terminate fast, i.e. in polynomial time. In this paper we focus on the termination of workflow nets, an established variant of Petri nets used for modelling business processes. We partially confirm the intuition on fast termination by showing a dichotomy: workflow nets are either non-terminating or they terminate in linear time.The central problem for workflow nets is to verify a correctness notion called soundness. In this paper we are interested in generalised soundness which, unlike other variants of soundness, preserves desirable properties like composition. We prove that verifying generalised soundness is coNP-complete for terminating workflow nets.In general the problem is PSPACE-complete, thus intractable. We utilize insights from the coNP upper bound to implement a procedure for generalised soundness using MILP solvers. Our novel approach is a semi-procedure in general, but is complete on the rich class of terminating workflow nets, which contains around 90% of benchmarks in a widely-used benchmark suite. The previous state-of-the-art approach for the problem is a different semi-procedure which is complete on the incomparable class of so-called free-choice workflow nets, thus our implementation improves on and complements the state-of-the-art.Lastly, we analyse a variant of termination time that allows parallelism. This is a natural extension, as workflow nets are a concurrent model by design, but the prior termination time analysis assumes sequential behavior of the workflow net. The sequential and parallel termination times can be seen as upper and lower bounds on the time a process represented as a workflow net needs to be executed. In our experimental section we show that on some benchmarks the two bounds differ significantly, which agrees with the intuition that parallelism is inherent to workflow nets.

Publisher

Springer Nature Switzerland

Reference45 articles.

1. Lecture Notes in Computer Science;WMP Aalst,1997

2. van der Aalst, W.M.P., et al.: Soundness of workflow nets: classification, decidability, and analysis. Formal Aspects Comput. 23(3), 333–363 (2011). https://doi.org/10.1007/s00165-010-0161-4

3. van der Aalst, W.M.: A class of petri net for modeling and analyzing business processes. Comput. Sci. Rep. 95(26), 1–25 (1995)

4. Lecture Notes in Computer Science;WMP van der Aalst,2002

5. Lecture Notes in Computer Science;B Bérard,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3