1. Araci, D.: Finbert: financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063 (2019)
2. Balcan, M., Prasad, S., Sandholm, T., Vitercik, E.: Sample complexity of tree search configuration: cutting planes and beyond. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, 6–14 December 2021, pp. 4015–4027 (2021). https://proceedings.neurips.cc/paper/2021/hash/210b7ec74fc9cec6fb8388dbbdaf23f7-Abstract.html
3. Balcan, M., Prasad, S., Sandholm, T., Vitercik, E.: Improved sample complexity bounds for branch-and-cut. In: Solnon, C. (ed.) 28th International Conference on Principles and Practice of Constraint Programming, CP 2022, 31 July to 8 August 2022, Haifa, Israel. LIPIcs, vol. 235, pp. 3:1–3:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.CP.2022.3
4. Lecture Notes in Computer Science;N Beldiceanu,2012
5. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, pp. 3615–3620. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1371. https://aclanthology.org/D19-1371