“I Want It That Way”: Enabling Interactive Decision Support Using Large Language Models and Constraint Programming

Author:

Lawless Connor1ORCID,Schoeffer Jakob2ORCID,Le Lindy3ORCID,Rowan Kael4ORCID,Sen Shilad5ORCID,St. Hill Cristina3ORCID,Suh Jina4ORCID,Sarrafzadeh Bahareh3ORCID

Affiliation:

1. Cornell University, USA

2. University of Texas at Austin, USA

3. Microsoft, USA

4. Microsoft Research, USA

5. Macalester College, USA

Abstract

A critical factor in the success of many decision support systems is the accurate modeling of user preferences. Psychology research has demonstrated that users often develop their preferences during the elicitation process, highlighting the pivotal role of system-user interaction in developing personalized systems. This paper introduces a novel approach, combining Large Language Models (LLMs) with Constraint Programming to facilitate interactive decision support. We study this hybrid framework through the lens of meeting scheduling, a time-consuming daily activity faced by a multitude of information workers. We conduct three studies to evaluate the novel framework, including a diary study to characterize contextual scheduling preferences, a quantitative evaluation of the system’s performance, and a user study to elicit insights with a technology probe that encapsulates our framework. Our work highlights the potential for a hybrid LLM and optimization approach for iterative preference elicitation, and suggests design considerations for building systems that support humansystem collaborative decision-making processes.

Publisher

Association for Computing Machinery (ACM)

Reference100 articles.

1. Marah I Abdin, Suriya Gunasekar, Varun Chandrasekaran, Jerry Li, Mert Yuksekgonul, Rahee Ghosh Peshawaria, Ranjita Naik, and Besmira Nushi. 2024. KITAB: Evaluating LLMs on constraint satisfaction for information retrieval. In The Twelfth International Conference on Learning Representations.

2. Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. GPT-4 technical report. arXiv preprint arXiv:2303.08774 (2023).

3. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)

4. Diversifying search results

5. User acceptance of multi-criteria decision support systems: The impact of preference elicitation techniques

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3