1. Bremer, J., Rapp, B., Sonnenschein, M.: Encoding distributed search spaces for virtual power plants. In: IEEE Symposium Series on Computational Intelligence (SSCI 2011), Paris, France, April 2011
2. Bremer, J., Sonnenschein, M.: Automatic reconstruction of performance indicators from support vector based search space models in distributed real power planning scenarios. In: Horbach, M. (ed.) Informatik 2013, 43. Jahrestagung der Gesellschaft für Informatik e.V. (GI), Informatik angepasst an Mensch, Organisation und Umwelt, 16–20 September 2013, Koblenz. LNI, vol. 220, pp. 1441–1454. GI (2013)
3. Bremer, J., Sonnenschein, M.: Constraint-handling for optimization with support vector surrogate models - a novel decoder approach. In: Filipe, J., Fred, A.L.N. (eds.) ICAART 2013 - Proceedings of the 5th International Conference on Agents and Artificial Intelligence, Barcelona, Spain, 15–18 February 2013, vol. 2, pp. 91–100. SciTePress (2013)
4. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-objective Problems (Genetic and Evolutionary Computation). Springer, Heidelberg (2006)
5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)