Publisher
Springer Nature Switzerland
Reference26 articles.
1. Aragón, M.E., López-Monroy, A.P., González-Gurrola, L.C., Montes-y Gómez, M.: Detecting depression in social media using fine-grained emotions. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 1481–1486. Association for Computational Linguistics, June 2019. https://doi.org/10.18653/v1/N19-1151. https://aclanthology.org/N19-1151
2. Cacheda, F., Fernandez, D., Novoa, F.J., Carneiro, V., et al.: Early detection of depression: social network analysis and random forest techniques. J. Med. Internet Res. 21(6), e12554 (2019)
3. Chancellor, S., De Choudhury, M.: Methods in predictive techniques for mental health status on social media: a critical review. NPJ Digit. Med. 3(1), 1–11 (2020)
4. Cohan, A., Desmet, B., Yates, A., Soldaini, L., MacAvaney, S., Goharian, N.: SMHD: a large-scale resource for exploring online language usage for multiple mental health conditions. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico, USA, pp. 1485–1497. Association for Computational Linguistics, August 2018. https://aclanthology.org/C18-1126
5. Coppersmith, G., Leary, R., Crutchley, P., Fine, A.: Natural language processing of social media as screening for suicide risk. Biomed. Inform. Insights 10, 1–11 (2018). 1178222618792860
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献