Methods in predictive techniques for mental health status on social media: a critical review

Author:

Chancellor Stevie,De Choudhury Munmun

Abstract

AbstractSocial media is now being used to model mental well-being, and for understanding health outcomes. Computer scientists are now using quantitative techniques to predict the presence of specific mental disorders and symptomatology, such as depression, suicidality, and anxiety. This research promises great benefits to monitoring efforts, diagnostics, and intervention design for these mental health statuses. Yet, there is no standardized process for evaluating the validity of this research and the methods adopted in the design of these studies. We conduct a systematic literature review of the state-of-the-art in predicting mental health status using social media data, focusing on characteristics of the study design, methods, and research design. We find 75 studies in this area published between 2013 and 2018. Our results outline the methods of data annotation for mental health status, data collection and quality management, pre-processing and feature selection, and model selection and verification. Despite growing interest in this field, we identify concerning trends around construct validity, and a lack of reflection in the methods used to operationalize and identify mental health status. We provide some recommendations to address these challenges, including a list of proposed reporting standards for publications and collaboration opportunities in this interdisciplinary space.

Funder

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Cited by 246 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3